
Introducing Portable.nsd

A portability framework for OpenACS
John Sequeira

http://www.pobox.com/~johnseq
9/2002

OpenACS

OpenACS is a framework for developing
community sites using TCL and AOLServer

• It has a sophisticated data model, module
packaging framework, an emphasis on high
performance, low learning curve, and coding ease

• Supports model-view-controller, pure script or
mixed html/script

• It’s the best!!!
• But …

OpenACS & Portability
• OpenACS runs only under AOLServer!
• AOL has de-emphasized cross-platform support
• AOLServer has limited database support
• AOLServer has small-ish user community and it’s

performance, reliability and ease of use are not widely
known.

• Prior attempts to port OpenACS to IIS and Apache have
not been maintained

• AOLServer is driven by and for AOL, on their schedule
• “AOLServer, what’s that?”

Solution: “portable.nsd”

• Build a deployment container for OpenACS
that recreates the AOLServer ns_ API’s, so
that OpenACS code can run under any web
server

• Implement this in pure TCL to minimize
development time and maximize portability
and database support

What’s not portable about
OpenACS?

• ns API in general
• database pooling
• nsv’s
• ns_register_proc, ns_register_filter
• startup/shutdown

What is portable.NSD?

• An TCL-only emulation layer that hides the
details of the deployment environment.

• Fully backwards compatible with OpenACS
code base.

• Based on nstcl, a partial implementation of
AOLServer ns api

Portable.NSD Architecture

Web Server
IIS,

Apache,
tclHTTPD

nsdAppServer.tcl

nsdRequestProcessor.tclnsdRequestProcessor.tclnsdRequestProcessor.tclnsdRequestProcessor.tcl

FastCGI,

CGI,

mod_tcl

tclsh

Service/daemon: exec,
service, ‘daemontools’

nsdAppServer.tcl

• Handles Application Server responsibilities
for OpenACS
– Scheduling
– Global State (nsv arrays) using Tequila
– Database initialization, installation
– All “singleton” behavior

nsdRequestProcessor.tcl

• Handles requests for pages, returns HTML
• Bytecode compiles and caches(?) page tcl
• Communicates with AppServer
• Has persistent database connection(s)

Benefits

• Pure tcl means no or little problem
integrating broader TCL community efforts
– ODBC, various database drivers
– XOTcl
– JDBC via Jacl, JavaBlend, Bean Scripting

Framework
– TCLScript, ADO, ASP, .NET
– Parrot?

More Benefits

• Run and debug pages from command line
• Easy IDE debugging
• Possibility of standalone deployment (creating one or two

exe’s for demo’s)
• Possible low-cost ISP deployment
• Vastly fewer reasons for interested users to not try and

select it
• Running under tclsh should easily support white-box unit

testing

Alright, the last benefit

• If the major web platforms were supported, the community
would grow a great deal

Implementation

• Identify unimplemented ns functions
• Stub missing functions with dummy environment
• Write initialization script to load all necessary

libraries
• Test against pre-initialized OpenACS database
• Implement request processor dispatch tables for

filters and registered proc’s

Things to Prototype

• “Tequila” as state server
• Bootstrapper to load all necessary libraries
• Make request processor container

independent
• mod_rewrite/FastCGI combination
• Replace ns_xml

Candidate Reference Platforms

• Apache 2.0 w/mod_fastcgi
• Apache 2.0 w/mod_tcl
• Apache 2.0 w/Rivet
• tclHTTPD Standalone

Fun Things to Try

• Standalone tclHTTPD deployment and exe
packaging

• Tclblend
• mod_webdav integration
• Running in-process w/IIS using TCLScript

